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Systemic autoinflammatory diseases (SAIDs) are caused by
aberrant activation of 1 or more inflammatory pathways in an
antigen-independent manner. Monogenic forms of SAIDs
typically manifest during childhood, and early treatment is
essential to minimize morbidity and mortality. On the basis of
the mechanism of disease and the dominant cytokine(s) that
propagates inflammation, monogenic SAIDs can be grouped
into major categories including inflammasomopathies/disorders
of IL-1, interferonopathies, and disorders of nuclear factor-xB
and/or aberrant TNF activity. This classification scheme has
direct therapeutic relevance given the availability of biologic
agents and small-molecule inhibitors that specifically target
these pathways. Here, we review the experience of using
biologics that target IL-1 and TNF as well as using Janus kinase
inhibitors for the treatment of monogenic SAIDs in pediatric
patients. We provide an evidence-based guide for the use of
these medications and discuss their mechanism of action, safety
profile, and strategies for therapeutic monitoring. (J Allergy
Clin Immunol 2023;151:607-18.)
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Systemic autoinflammatory diseases (SAIDs) are a heteroge-
neous group of conditions characterized by aberrant activation of
the inflammatory cascades in an antigen-independent manner.'~*
Dysregulation of the innate immune system leading to excess pro-
duction of proinflammatory cytokines is a hallmark of SAIDs.
From a simplistic view, this central mechanism distinguishes
autoinflammation from autoimmunity caused by dysfunction of
the adaptive immune system that results in a loss of tolerance to
self-antigens, although manifestations of autoimmunity can be
seen in some SAIDs.””

Advances in immunology and molecular genetics have
drastically accelerated the discovery of SAIDs in the past 2
decades. Since the initial description of familial Mediterranean
fever (FMF) in 1997, more than 50 monogenic SAIDs have been
described.® These diseases typically arise from loss-of-function
variants of regulatory proteins that normally restrain the inflam-
matory response or from gain-of-function variants of innate im-
mune sensors and their downstream messengers. These immune
pathways are tightly regulated during steady state, because
somatic mutations affecting only a small fraction of cells
are sufficient to trigger autoinflammation with multiorgan
manifestations.’

Regardless of the underlying mechanism, a typical feature of
SAIDs is early age of disease onset, although adult-onset cases are
also being increasingly recognized. The accrual of damage over
time creates significant challenges for the long-term health of
affected individuals and early treatment is essential to improve
outcome. In this review, we evaluate the evidence for use of
biologics and Janus kinase inhibitors (Jakinibs) for the treatment
of SAIDs in pediatric patients and discuss their mechanism of
action, safety profile, and strategies for therapeutic monitoring.

GENERAL PRINCIPLES FOR THE TREATMENT OF
SAIDs

To maintain the therapeutic focus of this review, we do not
discuss the pathophysiology of each disease in detail because
several excellent review articles on the mechanistic underpin-
nings of SAIDs are available”®'° Table E1 (in the Online Repos-
itory available at www.jacionline.org) provides a brief description
of the SAIDs mentioned in this review. SAIDs can be stratified
into several categories on the basis of the dominant immune
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Abbreviations used
AGS: Aicardi-Goutieres syndrome
CAPS: Cryopyrin-associated periodic syndrome
DADAZ2: Deficiency of adenosine deaminase 2
DIRA: Deficiency of IL-1 receptor antagonist
DMARD: Disease-modifying antirheumatic drug
FMF: Familial Mediterranean fever
HA?20: Haploinsufficiency of the NF-«kB regulator A20
HIDS: Hyper-IgD syndrome
HOIL-1: Haem-oxidized iron regulatory protein 2 ubiquitin ligase 1
IFN-I: Type I interferons
JAK: Janus kinase
Jakinib: Janus kinase inhibitor
JIA: Juvenile idiopathic arthritis
LoE: Level of evidence
MAS: Macrophage activation syndrome
MKD: Mevalonate kinase deficiency
NF-kB: Nuclear factor-kB
NLRC4: Nucleotide-binding and oligomerization domain-like re-
ceptor subfamily C
NLRP3: NOD-like receptor family pyrin domain—containing 3
NOD: Nucleotide-binding and oligomerization domain
NOMID: Neonatal-onset multisystem inflammatory disease
OTULIN: OTU deubiquitinase with linear linkage specificity
SAID: Systemic autoinflammatory disease
STAT: Signal transducer and activator of transcription
TNFi: TNF inhibitors
TRAPS: TNF receptor—associated periodic syndrome

pathway responsible for the inflammatory response.’'! Classifi-
cation of SAIDs by inflammasomopathies/disorders of IL-1, in-
terferonopathies, and disorders of nuclear factor-kB (NF-«B)
and/or aberrant TNF activity is not only helpful in considering
the pathogenic mechanisms but also has direct therapeutic impli-
cations given the availability of biologic agents and small-
molecule inhibitors that specifically target these pathways.

SAIDs are complex diseases and each possesses its own broad
spectrum of clinical manifestations. Penetrance and disease
severity are highly variable, even among family members who
share the same pathogenic variant(s). Inflammatory pathways do
not operate in silo and cytokine cross talk can achieve synergistic
or antagonistic effects. Therefore, even for conditions with a well-
defined mechanism, the collective experience in the field is
essential to establish the best treatment approach. In most
instances, empiric treatment of patients with SAIDs is trialed
long before the identification of causal genes. Some SAIDs are
effectively managed by glucocorticoids on an episodic basis,
whereas others respond well to nonbiologic disease-modifying
antirheumatic drugs (DMARDs). Colchicine, for example, re-
mains the first-line treatment for patients with FMF and may also
be highly effective for cases of undefined SAIDs.'*'> However,
the intense and chronic inflammation associated with SAIDs is
often refractory to treatment with these traditional anti-
inflammatory agents, including glucocorticoids. Persistent
inflammation can lead to additional complications such as
amyloidosis. Prolonged use of glucocorticoids in children causes
stunted growth and a plethora of detrimental consequences.

The use of biologics and Jakinibs has revolutionized the
treatment of many chronic inflammatory diseases in children,
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including juvenile idiopathic arthritis (JIA) and inflammatory
bowel disease.'®'” These agents are increasingly used to treat
SAIDs on the basis of the mechanistic understanding of these con-
ditions. The experience of treating patients with SAIDs often
starts with the off-label use of available medications, because
clinical trials for children with rare diseases are inherently diffi-
cult given the small number of patients and their phenotypic het-
erogeneity. Multicenter and international collaborations have
aided the development of clinical trials, and in some cases, the
remarkable efficacy of targeted therapy has led to rapid approval
of SAIDs as new indications by regulatory agencies.

LITERATURE REVIEW ON TREATMENT
STRATEGIES FOR SAIDs

In the following sections, we review the use of biologics for
the treatment of inflammasomopathies/disorders of IL-1 pro-
duction and disorders of NF-kB and/or aberrant TNF activity as
well as the use of Jakinibs for the treatment of interferonopathies
(Fig 1). The details of systemic literature review are provided in
Table E2 (in the Online Repository available at www.jacionline.
org). We evaluate the level of evidence (LoE) for the use of
available agents for SAIDs using guidelines established by the
Oxford Centre for Evidence-Based Medicine in 2011."% LoE is
determined on the basis of the availability of systematic reviews
of randomized trials (level 1), randomized trials (level 2), non-
randomized controlled cohort/follow-up studies (level 3), case
series/case-control studies (level 4), and mechanism-based
reasoning (level 5). Consistency among studies is indicated by
grades A to D: grade A, consistent level 1 studies; grade B,
consistent level 2 or level 3 studies or extrapolations from level
1 studies; grade C, level 4 studies or extrapolations from level 2
or level 3 studies; and grade D, level 5 evidence or inconsistent
or inconclusive studies of any level.'® The literature for each
agent was reviewed by at least 2 members of the study team,
and LoE was assigned after discussion with all members of
the team. Evidence level 5D was assigned for ultrarare diseases
with 3 or fewer cases available because of the paucity of
evidence.

For each class of medications, we provide a table that
summarizes the available evidence, current approval status by
the US Food and Drug Administration (FDA) and the European
Medicines Agency (EMA), the number of studies/patients
reviewed, and the pediatric dosage approved by the FDA/EMA
(if available) or the typical dose range used in the studies.
A similar approach was recently used in a review of select
inflammasomopathies and periodic fever, aphthous ulcers,
pharyngitis, and adenitis syndrome.'” The evidence ratings
reflect our analyses of available data from published studies
but do not represent expert consensus statements recommending
the use of these medications. For each class of medications re-
viewed, a companion extended table that provides details of
studies included in our literature review is provided in Tables
E3 to E5 (in the Online Repository available at www.
jacionline.org). We recognize that the literature is skewed to-
ward reporting positive outcomes, and readers should evaluate
the source articles for details of the cases, dosing strategies,
and treatment outcomes.

Nonmonogenic autoinflammatory syndromes, undefined
SAIDs, and monogenic diseases with less-defined mechanisms
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FIG 1. Therapeutic targets and available agents for the treatment of systemic autoinflammatory diseases. A,
In inflammasomopathies, aberrant activation of the inflammasomes triggers the activation of caspase 1,
which proteolytically generates active IL-13 and N-terminal gasdermin D. IL-1 is released through mem-
brane pores formed by N-terminal gasdermin D and binds to IL-1 receptor to propagate the inflammatory
response. IL-1 inhibitors include anakinra (recombinant IL-1RA), canakinumab (monoclonal anti-IL-18),
and rilonacept (dimeric fusion protein consisting of IL-1R1 and IL-1RAP conjugated to the Fc portion of hu-
man IgG1). B, Disorders of NF-«B result in increased production of TNF among other proinflammatory me-
diators. Membrane-bound TNF is cleaved to form soluble TNF, which binds to TNFR to regulate cell death
and promote NF-kB activation. TNFi include infliximab (chimeric human/mouse mAb), adalimumab (hu-
manized mAb), and etanercept (dimer of soluble TNFR2 fused to the Fc portion of IgG1). Many innate im-
mune sensors such as TLRs also induce inflammation via NF-«kB activation. C, Interferonopathies result
from excess production of IFN-I, which binds to IFNAR to mediate JAK-STAT signaling. Inhibition of JAK
by tofacitinib, ruxolitinib, and baricitinib is an approach increasingly used for the treatment of interferono-
pathies. IFNAR, IFN «/B receptor; IL-1R1,IL-1 receptor 1; IL-1RA, IL-1 receptor antagonist; IL-1RAP, IL-1 recep-
tor accessory protein; IRF9, IFN regulatory factor 9; ISG, interferon-stimulated gene; TLR, Toll-like receptor;
TNFR, TNF receptor; TYKZ2, tyrosine protein kinase 2.
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and inconsistent treatment experience are not discussed in detail
in this review. For detailed discussions and expert consensus on
the diagnostic evaluation and management of SAIDs, we strongly
recommend the 2021 European Alliance of Associations for
Rheumatology/American College of Rheumatology points-to-
consider articles for IL-1-mediated autoinflammatory diseases
and interferonopathies.zo 2!

Treatment of inflammasomopathies/disorders of
IL-1

Inflammasomes are supramolecular complexes that form in the
cytoplasm in response to specific danger signals.”” The structural
composition and mechanistic details of several inflammasomes
have been elucidated; these pathways converge to activate cas-
pase 1, which then cleaves pro—IL-1f3, pro—IL-18, and gasdermin
D, leading to the release of active IL-13 and IL-18 through mem-
brane pores in a process known as pyroptosis.”® Aberrant activa-
tion of the inflammasomes and excess production of IL-1(3
connect the pathology of SAIDs collectively known as
inflammasomopathies.”

The pathogenic role of IL-1 as demonstrated by the clinical
efficacy of IL-1 inhibition is well documented for diseases that
implicate dysregulation of the pyrin inflammasome (ie, FMF and
hyper-IgD syndrome [HIDS]) or the cryopyrin/NOD-like recep-
tor family pyrin domain—containing 3 (NLRP3) inflammasome
(ie, cryopyrin-associated periodic syndrome [CAPS] and Majeed
syndrome).z“’l'2x CAPS is caused by gain-of-function variants of
NLRP3 and represents a spectrum of SAIDs of increasing
severity, including familial cold autoinflammatory syndrome,
Muckle-Wells syndrome, and neonatal-onset multisystem inflam-
matory disease (NOMID).>!

Excess IL-1 signaling alone is sufficient to cause the develop-
ment of severe multisystem inflammation, as illustrated by
patients with deficiency of IL-1 receptor antagonist
(DIRA).*>** The link to inflammasome/IL-1 activation may be
less direct for some conditions grouped under this category.
TNF receptor—associated periodic syndrome (TRAPS) caused
by mutations of a TNF receptor subunit is intuitively a disease
of TNF dysregulation but data from mechanistic studies and clin-
ical trials increasingly favor a central role of IL-1B."**"*" In the
case of the recently described neonatal onset of pancytopenia,
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TABLE Il. Use of IL-1 inhibitors in inflammasomopathies/disorders of IL-1

No. of studies

Agent Disease LoE FDA EMA (no. of patients) Pediatric dosing

Anakinra crFMF 2C — J 9 (>100) Start: 1-2 mg/kg/d; maximum 100 mg/d.
MKD/HIDS 3C — — 7 (86) Titrate to 3-4 mg/kg/d if necessary;
TRAPS 3C — — 5 (>100) maximum 200 mg/d.
FCAS/MWS 3C — N 5 (>100)
NOMID/CINCA* 3C ) V. 4 (61)
DIRA* 3C N — 10 (17)
PAPA 4C — — 7 (14)
Majeed syndrome 4C — — 4 (7)
NOCARH 4C — — 2(7)

Canakinumab crFMF 2B J J 9 (>200) <40 kg: 2 mg/kg every 4 wk;
MKD/HIDS 2B N, N, 7 (>100) Titrate to 4 mg/kg every 4 wk if necessary.
TRAPS 2B J J 4 (61) >40 kg: 150-300 mg every 4 wk.
FACS/MWS+ 2B N, N, 10 (>200)
NOMID/CINCA 2B — NI 9 (>100)
PAPA 4C — — 44
Majeed syndrome 5D — — 2 (3)

Rilonacept crFMF 2C — — 1 (14) 2.2 mg/kg weekly.
FACS/MWS 2B J — 3 (>100) Start: 4.4 mg/kg weekly, maintenance
DIRA 3C N — 1 (6) 2.2 mg/kg weekly; maximum 320 mg weekly.

CINCA, Chronic infantile neurological cutaneous articular syndrome; crFMF, colchicine-resistant familial Mediterranean fever; FCAS/MWS, familial cold autoinflammatory
syndrome/Muckle-Wells syndrome; NOCARH, neonatal onset of pancytopenia, autoinflammation, rash, and episodes of hemophagocytic lymphohistiocytosis; PAPA, pyogenic

arthritis, pyoderma gangrenosum, and acne.
*Maximum 8 mg/kg/d.

fTDose every 8 wk.

12-8 mg/kg every 4-8 wk; maximum 600 mg/d.

autoinflammation, rash, and episodes of hemophagocytic lym-
phohistiocytosis, pathogenic variants of cell division cycle 42
misdirect the translated protein to the Golgi apparatus and cause
pyrin activation.”*’

Currently, there are 3 available biologic agents that target IL-1:
anakinra, rilonacept, and canakinumab (Fig 1, A). Anakinra is a
recombinant form of the endogenous IL-1 receptor antagonist
that attenuates IL-1« and IL-13 signaling by competitive binding
to the IL-1 receptor complex. Canakinumab is a human mAb that
neutralizes IL-13, whereas rilonacept is a soluble receptor that
traps IL-1a and IL-1P. Additional drug candidates that target
the inflammasomes and IL-1 have been recently reviewed.® IL-
1B is the key driver of pathology in most inflammasomopathies
and it is effectively neutralized by all 3 IL-1 antagonists, although
studies that directly compare the relative efficacy of these agents
for a given indication are lacking. Anakinra is approved for the
treatment of NOMID by the FDA and for all forms of CAPS
by the EMA. Canakinumab first received approval for
CAPS, and its indications subsequently expanded to include
colchicine-resistant FMF, TRAPS, and mevalonate kinase defi-
ciency (MKD) in the United States and Europe on the basis of
the results from the Canakinumab Pivotal Umbrella Study in
Three Hereditary Periodic Fevers trial.** Rilonacept is FDA-
approved for the treatment of CAPS (familial cold autoinflamma-
tory syndrome and Muckle-Wells syndrome), but its availability
is currently limited to the United States.*® Table I presents the ev-
idence for the use of IL-1 antagonist in patients with inflammaso-
mopathies/disorders of IL-1. Details of individual studies
included in our literature review are provided in Table E3 (in
the Online Repository available at www.jacionline.org).

The IL-1 antagonists are given as subcutaneous injections
but their pharmacokinetics and frequency of administration are

highly variable. Anakinra is given daily, rilonacept is dosed
weekly, and canakinumab is administered every 4 to 8
weeks.”” For a trial of IL-1 blockade when the diagnosis is un-
certain, clinicians often prefer anakinra because of its short
half-life and rapid onset of action. However, daily injections
are challenging in young children and the dosing schedule of
canakinumab may be better tolerated. In circumstances in
which IL-1a may also contribute to the inflammatory response
(ie, DIRA), the dual specificity for IL-1a and IL-13 makes
anakinra and rilonacept preferred over canakinumab. For
SAIDs with central nervous system involvement (ie, CAPS),
there is no direct in vivo comparison of IL-1 antagonists to
evaluate their ability to penetrate the blood-brain barrier.
In vitro modeling of the blood-brain barrier suggests that ana-
kinra is transported more efficiently than canakinumab."’
Although both anakinra and canakinumab are clinically effec-
tive for NOMID, anakinra treatment was associated with a
greater reduction of IL-6, C-X-C motif chemokine ligand 10
(CXCL-10), IL-18, and white blood cell levels in the cerebro-
spinal fluid compared with that associated with canakinumab
treatment in a small study of 8 patients.*'

The levels of IL-1a and IL-1f in the peripheral blood are
generally low and cannot be used reliably to track disease activity
in patients with inflammasomopathies/disorders of IL-1. Serum
levels of IL-1( in patients with CAPS are captured only after
the administration of canakinumab and formation of IL-13—anti-
body complexes.”” Clinically, rapid improvement of disease
manifestation is often seen after the administration of IL-1 antag-
onists, in parallel with reductions in neutrophil count and inflam-
matory markers such as C-reactive protein, erythrocyte
sedimentation rate, serum amyloid A, and S100 proteins.m’42 Dis-
ease activity and damage can also be monitored using the
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validated Autoinflammatory Diseases Activity Index and the
Autoinflammatory Disease Damage Index to aid in adjustment
of therapy.”’ American College of Rheumatology (ACR)/Euro-
pean Alliance of Associations for Rheumatology (EULAR) guid-
ance is available for disease-specific monitoring of CAPS,
TRAPS, MKD, and DIRA.

IL-1 antagonists are generally well tolerated with comparable
safety profiles. Injection-site reactions characterized by localized
erythema and painful induration are common during the initial
weeks of therapy, especially with anakinra and rilonacept.’” The
cause of site reactions remains unclear but these findings are tran-
sient and resolve spontaneously in most cases, sometimes
requiring topical therapies and/or antihistamines. Despite the
multiple roles of IL-1 in innate and adaptive immunity, the infec-
tion risk associated with IL-1 blockade appears to be modest.
Early studies on anakinra did not reveal significantly increased
risk for serious infections in adults with rheumatoid arthritis or
patients with bacterial sepsis (even at much higher doses
compared with the treatment of SAIDs).**** In the Canakinumab
Anti-inflammatory Thrombosis Outcomes Study, increased mor-
tality related to infections was associated with canakinumab treat-
ment but death was more likely in individuals with older age and
diabetes.® Heightened risk for opportunistic infections such as
tuberculosis was not noted in these trials. Although long-term
data are limited in the pediatric population, infections related to
the use of IL-1 antagonists are uncommon and the favorable
safety profile has broadened the use of these medications for sys-
temic JIA, Kawasaki disease, macrophage activation syndrome
(MAS), and multisystem inflammatory syndrome in children
associated with coronavirus disease 2019."”" Concerns for
increased malignancy risk are also minimal for IL-1 antagonists.
In fact, inflammation mediated by IL-1 may promote oncogen-
esis, and canakinumab treatment was associated with a
substantial reduction of lung cancer risk in the Canakinumab
Anti-inflammatory Thrombosis Outcomes Study.”’

Treatment of disorders of NF-«B and/or aberrant
TNF activity

NF-kB is a family of essential transcription factors that mediate
proinflammatory and antiapoptotic effects of multiple danger-
sensing pathways. Detailed reviews of NF-kB biology are
available.’>” Inducers of NF-kB signaling include Toll-like re-
ceptors, nucleotide-binding and oligomerization domain
(NOD)-like receptors, and the inflammatory cytokines TNF and
IL-1. Activation and nuclear translocation of NF-kB result in
the production of TNF, IL-6, and other cytokines/chemokines to
propagate the inflammatory response. To prevent excess inflam-
mation, NF-kB activation is tightly controlled by inhibitory pro-
teins that are in turn intricately regulated by a system of
ubiquitination and proteasomal degradation.’””* Reflecting the
complexity of NF-«kB signaling and its large network of regulato-
ry pathways, the pathologic mechanisms for disorders of NF-kB
and/or aberrant TNF activity are not straightforward.

NOD?2 is a cytoplasmic sensor that activates NF-kB on detec-
tion of muramyl dipeptide derived from bacterial cell wall.”>°
NOD2 mutations are responsible for Blau syndrome, an
autosomal-dominant disease characterized by arthritis, uveitis,
and granulomatous dermatitis.”’ Excess activation of NF-«B
due to gain-of-function NOD?2 variants is thought to be the basis
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of chronic inflammation, and TNF inhibitors (TNFi) can be highly
effective for Blau syndrome.”®>” In contrast, a recent study argues
that NOD2 may have an inhibitory role, and the inability to cross-
regulate inflammatory triggers due to loss-of-function mutations
is responsible for the aberrant NF-kB activation in Blau
syndrome.f’('

A20 and OTU deubiquitinase with linear linkage specificity
(OTULIN) are deubiquitinases that negatively regulate NF-«xB
signaling by modulating proteasomal degradation of upstream
mediators. These known functions can explain the increased
NF-kB activation and TNF production in patients with haploin-
sufficiency of the NF-kB regulator A20 (HA20) and deficiency
of OTULIN (otulipenia/OTULIN-related autoinflammatory syn-
drome).®’®* OTULIN also antagonizes the function of linear
ubiquitin assembly complex (comprising haem-oxidized iron reg-
ulatory protein 2 ubiquitin ligase 1 [HOIL-1], HOIL-1-interact-
ing protein, and SHANK associated RH domain interactor
[SHARPIN]). Interestingly, pathogenic mutations in HOIL-1
and HOIL-1-interacting protein that lead to decreased NF-«B ac-
tivity also cause SAIDs that are at least partially responsive to
TNF inhibition.®>® Increased cell death induced by TNF
signaling may be the trigger of spontaneous inflammation in these
conditions. A similar mechanism of enhanced cell death may
explain the autoinflammatory features of RELA haploinsuffi-
ciency and TANK-binding kinase 1 deficiency in the setting of
reduced NF-kB function.®”°® Although it may seem counterintu-
itive that excess as well as insufficient activation of NF-kB can
lead to autoinflammation, this enigma is in part explained by dif-
ferential utilization of NF-kB among different cell types, setting
up scenarios in which some cells are hyperresponsive while others
are paradoxically hyporesponsive to the same inflammatory
stimulus.®’

In some instances such as in the deficiency of adenosine
deaminase 2 (DADA?2), the pathogenic mechanism remains
unclear and the classification as a disorder of aberrant TNF
activity largely reflects the experience of treating patients with
TNFi.” Activation of macrophages by neutrophil extracellular
traps is a potential source of TNF in DADA2.”' However, data
for the effectiveness of TNF inhibition in DADA?2 are largely
restricted to the vasculitic/inflammatory phenotype. Severe hema-
tologic and immunologic derangements in DADA?2 are typically
refractory to TNFi and require allogeneic hemopoietic stem cell
transplant.’”*"

TNFi are often used for the treatment of JIA and inflammatory
bowel disease in children. Interestingly, musculoskeletal and
intestinal inflammation are common manifestations of SAIDs
caused by aberrant NF-kB and/or TNF activity. TNFi used for the
treatment of SAIDs include etanercept (recombinant soluble TNF
receptor 2 and IgG1 Fc fusion protein), infliximab (chimeric hu-
man/mouse mAb), and adalimumab (humanized mAb) (Fig 1, B).
Currently, SAIDs are not among the approved indications of
TNFi. Table II provides a summary of evidence for the use of
TNFi in SAIDs. Details of individual studies from our literature
review are provided in Table E4 (in the Online Repository avail-
able at www.jacionline.org).

Beyond its role as a mediator of inflammation, NF-«B is criti-
cally involved in adaptive immunity as a downstream effector of
B-cell receptor and T-cell receptor signaling cascades.’™’*
A noncanonical pathway of NF-«kB signaling is further required
for lymphoid tissue development.”* The multiple essential
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TABLE Il. Use of TNFi in disorders of NF-kB and/or aberrant TNF activity

No. of studies

Agent Disease LoE FDA EMA (no. of patients) Pediatric dosing
Etanercept DADA2 3¢ — — 10 (49) 0.8 mg/kg weekly or 0.4 mg/kg twice weekly.
HA20 € — — 9 (18) Maximum: 50 mg/wk.
Blau syndrome 4C  — — 7 (8)
LUBAC sb — — 23)
ORAS s — — 2(2)
Infliximab DADA2 3 — — 8 (15) Loading: 5-6 mg/kg on weeks 0, 2, and 6.
HA20 4C — — 9 (18) Maintenance: every 4-8 wk. Titrate dose up to 10 mg/kg or increase
Blau syndrome 4C — — 14 (29) treatment frequency if necessary.
ORAS sb — — 2(2)
TBKI1 deficiency 5D — — 1)
RELA haploinsufficiency 5D — — 1 (1)
Adalimumab DADA2 3 — — 8 (42) 10-40 mg every 2 wk;* increase dose or frequency if necessary.
Blau syndrome 4C  — — 15 (16)
HA20 4C — — 5(8)

LUBAC, Linear ubiquitin assembly complex; ORAS, OTU deubiquitinase with linear linkage specificity—related autoinflammatory syndrome; TBK/, TANK-binding kinase 1.
*Dosages were variable among studies. Recommended doses for JIA and pediatric ulcerative colitis are provided here for reference. JIA: 10 to <15 kg: 10 mg every 2 wk; 15 to <30
kg: 20 mg every 2 wk; >30 kg: 40 mg every 2 wk. Pediatric ulcerative colitis: 20-40 kg: 20 mg weekly or 40 mg every 2 wk; >40 kg: 40 mg weekly or 80 mg every 2 wk.

immune functions of NF-«B likely explain the frequent presence
of immunodeficiency in disorders of NF-kB signaling. As with
any immunosuppressive treatment, the risks and benefits of
TNFi in patients with underlying immunodeficiency should be
considered on a case-by-case basis.

Disease manifestations and levels of acute-phase reactants
should be followed to determine disease activity and treatment
response for disorders of NF-kB and/or aberrant TNF activity.
Standardized assays to measure TNF levels are not routinely
available for clinical use, and TNF levels in the peripheral blood
may increase after treatment because of drug-cytokine com-
plexes.”” Transcriptomic signatures of NF-«B and TNF signaling
have been developed and may be helpful in assessing immune
activation and treatment response on a research basis.”®’’

The development of neutralizing antibodies to TNFi poses a
serious concern for the long-term efficacy of these medications.”®
Antidrug antibodies are rare for etanercept but can occur in 15%
to 30% of patients treated with infliximab or adalimumab. In sit-
uations wherein a disease flare may lead to significant complica-
tions, such as stroke or brain hemorrhage in patients with
DADAZ2, periodic monitoring of antidrug antibodies should be
considered. Concurrent use of DMARDs such as methotrexate
has been shown to restrain the development of antidrug anti-
bodies, but evidence of this approach in SAIDs has not been
demonstrated.”’

The safety profile of TNFi in children is generally favorable on
the basis of studies on JIA.*® Mild injection-site reactions to eta-
nercept and adalimumab can occur in approximately one-third of
cases, whereas infliximab treatment is associated with infusion re-
actions in 10% to 20% of patients. Two meta-analyses concurred
that serious infections and opportunistic infections are not signif-
icantly increased in patients with JIA treated with TNFi compared
with other treatment groups.®'*? However, patients with SAIDs
that implicate NF-«kB dysregulation may have considerably
higher risks at baseline because of their intrinsic immunodefi-
ciency. Rare adverse effects of TNFi include psoriasis, autoimmu-
nity, demyelinating disease, and nonmelanoma skin cancer.”” The
incidence of these findings in the pediatric population is

unknown. Natural history studies and clinical trials are needed
to determine the prevalence of these findings in patients with
SAIDs and the potential associations with immunosuppressive
therapy.

Treatment of interferonopathies

Interferonopathies are a group of monogenic SAIDs with
pathology primarily mediated by increased production of type I
interferons (IFN-I) and/or dysregulated IFN-I signaling.m Dis-
cussion of IFN-I is typically confined to IFN-a and IFN-f3, but
the cytokine family also includes IFN-g, IFN-k, and IFN-w.
IFN-I are best known for their role in orchestrating the body’s im-
mune response to viruses.”* Recognition of exogenous and
endogenous nucleic acids by one of several innate sensing path-
ways culminates in the production of IFN-I, which then binds
to the IFN-a/f receptor complex to activate Janus kinase 1
(JAK1) and tyrosine protein kinase 2. JAK activation recruits
and phosphorylates signal transducer and activator of transcrip-
tion 1 and 2 (STAT1 and STAT?2), which together form a hetero-
dimer that complexes with IFN regulatory factor 9 and
translocates into the nucleus to initiate the transcription of target
genes.

The elaborate mechanisms involved in nucleic acid sensing and
IFN-I production are important for antiviral defense but also
license the development of SAIDs when these pathways are
dysregulated.” Indeed, interferonopathies have been linked to
gain-of-function variants of nucleic acid sensors (ie, stimulator
of interferon genes, retinoic acid—inducible gene I, and melanoma
differentiation—associated gene 5) and IFN-I signaling mediators
(ie, JAK1, STAT1, and STAT?2) as well as to loss-of-function var-
iants of nucleases (ie, 3-prime repair exonuclease 1, ribonuclease
H2A/B/C, and deoxyribonuclease 1/2/1L3), nucleic acid modi-
fiers (ie, adenosine deaminase acting on RNA 1, and sterile o
motif and histidine-aspartate domain—containing protein 1), and
negative regulators of IFN-I signaling (ie, ubiquitin-specific pro-
tease 18, interferon-stimulated gene product 15, and suppressor of
cytokine signaling 1). Interferonopathies can also develop in the
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No. of studies

Agent Disease LoE FDA EMA (no. of patients) Pediatric dosing*

Tofacitinib SAVI 4C — — 5(8) 10 to <20 kg: 3.2 mg twice daily.
AGS 4c — — 4.(5) 20 to <40 kg: 4 mg twice daily.
CANDLE/PRAAS 5D — — 33) 540 kg: 5 mp twice daily.f
SOCSI haploinsufficiency 5D — — 1(1)

Baricitinib AGS 3C — — 4 (40) Start 4-8 mg total daily dose
CANDLE/PRAAS 3¢ - - 20D (divided in 2-3 doses) depending
SAVI 4C - - 3 on weight and eGFR; detailed
STAT1-GOF 4c - - 34 dosing table and strategies for
COPA 5D - - 2 dose escalation are described.
SOCSI haploinsufficiency 5D — — 1(1)
C1 deficiency 5D — — 12
Deoxyribonuclease 2 deficiency 5D — — 1(1)

Ruxolitinib STAT1 GOF 3C — — 12 31) Start 0.3-0.4 mg/kg total daily
SAVI 4c = = 7 (29) dose (divided in 2 doses).®
AGS 4c — — 7 (8) Maximum 1.1-2.0 mg/kg total
CANDLE/PRAAS 5D — — (1) daily dose (divided in 2 doses).®
USP18 deficiency 5D — — 1(1)
Deoxyribonuclease 2 deficiency 5D — — 1(1)

CANDLE/PRAAS, Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndromes; COPA, COPI Coat
Complex Subunit Alpha; eGFR, estimated glomerular filtration rate; GOF, gain of function; SAVI, stimulator of interferon gene—associated vasculopathy with onset in infancy;

SOCS1, suppressor of cytokine stimulation 1; USPI8, ubiquitin-specific protease 18.

*Dosing strategies for Jakinibs in children vary widely among studies. Most publications describe weight-based dosing, whereas some describe dosing based on body surface area.

+The recommended dosage of tofacitinib for treatment of JIA is provided.*®

1The dosing algorithm for baricitinib on the basis of age and eGFR described by Kim et al is referenced.®

SThe range of initial dosing and maximum dosing for ruxolitinib is derived from large case series.

setting of proteosome dysfunction, although the precise mecha-
nism for IFN-I production remains to be confirmed.” The patho-
physiology of interferonopathies has been extensively reviewed
elsewhere. "%

The manifestations of interferonopathies are often distinct
from those associated with inflammasomopathies and disorders
of NF-kB/excess TNF production. Progressive neurologic
decline, encephalopathy, brain calcification, cutaneous vascul-
opathy, interstitial lung disease, and systemic autoimmunity
are among the hallmarks of interferonopathies.' The presence
of autoantibodies and organ-specific manifestations of autoim-
munity (ie, glomerulonephritis, thyroiditis, and vasculitis) high-
light the role of IFN-I in adaptive immunity and illustrate that
the concepts of autoinflammation and autoimmunity are not
mutually exclusive.

JAKs mediate IFN-I signaling directly downstream of IFN-o/3
receptor, and small-molecule Jakinibs are increasingly used for the
treatment of interferonopathies.*® There are 4 members of the JAK
family in humans: JAK1, JAK2, JAK3, and tyrosine protein kinase
2. The available first-generation Jakinibs including tofacitinib,
baricitinib, and ruxolitinib all display selectivity toward multiple
JAKs (Fig 1, 0).* Baricitinib and ruxolitinib primarily target
JAK1 and JAK?2, whereas tofacitinib possesses greater selectivity
to JAK1 and JAK3. The requirement of JAKI in the IFN-I
signaling cascade provides a rationale for the therapeutic use of
these agents in patients with interferonopathies. Table III**”" pre-
sents the evidence for the use of first-generation Jakinibs in SAIDs,
and details of individual studies are provided in Table E5 (in the
Online Repository available at www.jacionline.org).

Jakinibs are approved for the treatment of polyarticular JIA
(tofacitinib) in children and chronic graft-versus-host disease

90,91

(ruxolitinib) in adolescents.*®’? Their safety and efficacy in pa-
tients with interferonopathies have been demonstrated by many
studies, although randomized clinical trials are lacking. In an
open-label single-center study of 35 patients with Aicardi-
Goutieres syndrome (AGS), baricitinib treatment was associated
with improved skin manifestations and neurologic function as
measured by developmental milestones, even in patients with
long-standing disease.”” These findings argue against the notion
that treatment is effective only to alleviate active inflammation.
This study and other case series collectively demonstrate the
beneficial effects of Jakinibs on quality-of-life measures and
emphasize the importance of early treatment.””*%7 At this
time, there is insufficient evidence to compare the relative efficacy
of different Jakinibs, and therefore selection of these agents is
typically based on availability and experience of the providers.
Unlike the inflammatory profile of SAIDs that implicate excess
production of IL-1 or TNF, conventional markers of inflammation
such as acute-phase reactants, neutrophilia, and thrombocytosis
are less reflective of the systemic inflammation associated with
interferonopathies. The diagnostic evaluation and disease moni-
toring of interferonopathies often rely on quantification of gene
expression induced by IFN-I°%7 an approach used to assess
IFN-I upregulation in patients with autoimmune diseases such
as systemic lupus erythematosus. Evaluation of this interferon
signature is typically performed on a research basis by quantita-
tive PCR or more advanced transcriptomic techniques (ie, Nano-
String nCounter assay, microarray, and RNA sequencing).
However, the correlation between interferon levels and disease
activity may vary among the different conditions. ACR/EULAR
guidance is available for disease-specific monitoring and manage-
ment of AGS, stimulator of interferon genes—associated
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vasculopathy of infancy, and proteasome-associated autoinflam-
matory syndromes/chronic atypical neutrophilic dermatosis
with lipodystrophy and elevated temperature.”’

JAKSs regulate the signaling of more than 40 cytokines and
growth factors; thus, broad inhibition of these pathways by first-
generation Jakinibs can potentially cause a wide spectrum of
unwanted consequences. In practice, the safety profile of Jakinibs
is largely comparable with that of other biologics.”® Common
adverse effects of Jakinibs include transient elevation of transam-
inases, increased high-density and low-density cholesterol levels,
and increased infection risk. In trials for rheumatoid arthritis in
adults, the risk of infections associated with Jakinibs treatment
was comparable with that associated with other biologics except
for an increased incidence of herpes zoster infection seen with all
first-generation Jakinibs.””"'"’ Long-term monitoring of tofaciti-
nib treatment in adults with rheumatoid arthritis (aged >50 years
with >1 additional cardiovascular risk factor) revealed that
compared with TNFi, tofacitinib treatment is associated with
higher risk of major cardiovascular events (hazard ratio, 1.33;
95% CI, 0.91-1.94) and malignancy (hazard ratio, 1.48; 95%
CI, 1.04-2.09).""!

It remains to be seen whether the cardiovascular and malig-
nancy risks associated with Jakinibs are applicable to pediatric
patients or healthy adults without the underlying risk factors.
Although there is a paucity of safety data in the pediatric
population, BK viremia associated with the use of Jakinibs has
been reported in several patients with interferonopathies, and
therefore routine screening is recommended to prevent nephrop-
athy.””***192 In the largest trial to date for the use of Jakinibs in
children with JIA, the rates of serious adverse events and serious
infection associated with tofacitinib exposure were 4% (incidence
rate, 7.3/100 patient-years) and 2% (incidence rate, 2.4/100
patient-years), respectively, over 44 weeks.*® Two mild cases of
herpes zoster were documented, and transient elevation of trans-
aminase levels occurred in approximately 15% of patients. Impor-
tantly, in the placebo-controlled phase of the study, there was no
significant difference in the rate of adverse events between tofaci-
tinib and placebo groups.®® However, the impact of prolonged
JAK inhibition on growth and development is unknown. This is
an important question to address in the pediatric population given
the role of JAK?2 in growth hormone signaling. Long-term surveil-
lance studies in children are necessary to fully understand the risk
profile associated with Jakinibs.

Abrupt discontinuation of Jakinibs may lead to an acute
cytokine storm syndrome because of the rebound of multiple
cytokines. Experience with this phenomenon comes from patients
with myelofibrosis treated with ruxolitinib. Common manifesta-
tions of the described ruxolitinib discontinuation syndrome
include disease relapse, cytopenia, and worsening splenomegaly.
Life-threatening complications including coagulopathy, acute
respiratory distress syndrome, and septic-like shock have been
described in a few cases.!”® Therefore, a gradual reduction of
dosage is recommended for tapering or discontinuation of
Jakinibs.

A newer generation of Jakinibs that specifically target JAK1
(upadacitinib and filgotinib) are clinically available for the
treatment of rheumatoid arthritis in adults.'”* Selective disruption
of IFN-I signaling without having an impact on other immune
pathways can also be accomplished by neutralizing IFN-I or
blocking their binding to IFN-a/f receptor. Anifrolumab, an
mAD that targets IFN-a/3 receptor, was recently approved for
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the treatment of systemic lupus erythematosus.'”> These newer
agents with improved selectivity maybe advantageous compared
with the existing Jakinibs for the treatment of interferonopathies.
In addition, an open-label pilot study of nucleoside analog
reverse-transcriptase inhibitors (abacavir, lamivudine, and zido-
vudine combined) in patients with AGS demonstrated a reduction
of IFN-I levels.'® This study illustrates that nucleic acids from
endogenous retroviral elements may be targeted to reduce IFN-I
production in some forms of interferonopathies.

THE USE OF OTHER BIOLOGICS IN SAIDs

Increased levels of IL-6 and its surrogate marker C-reactive
protein are often seen in patients with SAIDs. Tocilizumab is an
mAD that inhibits IL-6 signaling by binding to the soluble IL-6
receptor. The production of IL-6 occurs downstream of IL-1
signaling and NF-kB activation, but the contribution of IL-6 to the
pathophysiology of SAIDs is less unclear. Tocilizumab is used as
the primary therapy in the recently described cleavage-resistant
receptor-interactive protein kinase 1-induced autoinflammatory
syndrome.'"”'% There are also case reports and case series on
the use of tocilizumab in FMF, TRAPS, and HIDS, often in pa-
tients who are refractory to other treatment options.”

Our earlier discussion of inflammasomopathies focused on the
biology of IL-1. The activation of caspase 1 by inflammasomes
also permits activation and release of IL-18, and strikingly high
levels of IL-18 are associated with dysregulation of the NOD-like
receptor subfamily C (NLRC4) inflammasome. Patients with
gain-of-function NLRC4 variants experience early-onset colitis
and MAS.'%”"'? IL-18 licenses the production of IFN-y, which
plays a central role in the development of hemophagocytic lym-
phohistiocytosis and MAS. Inhibition of IL-18 by tadekinig alfa
(recombinant human IL-18 binding protein) has demonstrated
beneficial effects in cases of NLRC4-MAS and a clinical trial is
ongoing (NCT03113760)."'"'"? Elevated levels of IL-18 are
also described in other inflammasomopathies treated with IL-1
antagonists, but the clinical significance remains to be eluci-
dated.''® The distinction of IL-1-opathies and IL-18-opathies
has been recently proposed.'’

Biologics targeting IL-17 and IL-12/IL-23 have been recently
approved for the treatment of psoriasis and psoriatic arthritis in
children. To our knowledge, these agents have not been used to
treat SAIDs.

CHALLENGES IN THE TREATMENT OF SAIDs
Treatment of monogenic SAIDs remains challenging because of
the rarity of these conditions and the limited understanding of their
pathophysiology. The 3 groups of SAIDs reviewed in the earlier
sections are categorized largely on the basis of the mechanism of
inflammation related to the underlying monogenic defects. In
practice, monogenic disorders comprise only a fraction of SAIDs
and many patients with features of systemic autoinflammation
possess genetic variants that are not considered pathogenic/likely
pathogenic, or have no detectable defects at all in genes associated
with SAIDs. Some of these patients may have known nonmono-
genic autoinflammatory syndromes such as systemic JIA (Still
disease) and periodic fever, aphthous ulcers, pharyngitis, and
adenitis syndrome, for which treatment algorithms are available.
The remainder comprise a highly heterogeneous group under the
diagnosis of undefined SAIDs. Although there is no standardized
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treatment for patients with undefined SAIDs, a treat-to-target
approach of trialing nonsteroidal anti-inflammatory drugs, colchi-
cine, DMARD:s, corticosteroids, and biologics while weighing the
risks and benefits of each treatment is used. As shown by a large
study from the EuroFever Registry, many patients with undefined
SAIDs respond well to nonsteroidal anti-inflammatory drugs,
corticosteroids, colchicine, and anakinra.''

Even for SAIDs with well-characterized monogenic defects,
the trichotomous grouping is an oversimplification given the
extensive interactions between immune pathways and our
incomplete understanding of these diseases. Lessons from clinical
experience often raise more questions. For instance, HA20 is
mechanistically a disorder of NF-kB dysregulation and patients
are typically treated with colchicine, DMARDs, and/or
TNFi.'" Curiously, an elevated expression of IFN-I-inducible
genes (classically seen in interferonopathies) was observed in pa-
tients refractory to TNFi, and JAK inhibition using baricitinib
effectively treated the residual inflammation in these cases.''®
In light of these findings, should the interferon signature be exam-
ined in every patient with HA20? An IFN-I signature is similarly
described in DADA?2 and otulipenia.''”"''® Should we consider
Jakinibs for these conditions on the basis of the IFN signature
alone? Moreover, aberrant activation of nucleic acid-sensing
pathways that drive the development of interferonopathies also
mechanistically elicits NF-kB activation and TNF production.
The overlap between these pathways has practical implications
given the antagonistic effects of inhibiting TNF and IFN-I path-
ways.''” Furthermore, some inflammasomopathies are associated
with elevated production of TNF in addition to IL-1, and benefi-
cial effects of TNF blockade have been reported in observational
studies. The same is true for the use of IL-1 inhibitors for disor-
ders of NF-«B activation and TNF production. Do these pathways
operate synergistically in the context of autoinflammation or act
in parallel to drive different organ-specific manifestations? In pa-
tients who display only partial response to an agent, should the
addition of another biologic (from a different class) or Jakinib
be considered and do the potential benefits outweigh the added
risks of immunosuppression? These questions are among the
many complex issues related to the treatment of SAIDs. The com-
bination of clinical experience, mechanistic studies, and molecu-
lar profiling of each disease is necessary to piece together these
puzzles and optimize the treatment approach for each disease
and each patient.

THE EVOLVING PRACTICE OF TREATING SAIDs

The availability of biologics and Jakinibs has profoundly
changed how we manage SAIDs in children. However, the rarity
of SAIDs and the lack of randomized controlled trials in the
pediatric population will continue to be limitations for developing
evidence-based treatment approaches. The bias in reporting
positive findings also has an impact on our estimation of
therapeutic efficacy and adverse effects. Moving forward, unbi-
ased reporting of cases regardless of outcome and combining
experience through multicenter collaborations are critical to
improve the quality of evidence needed to determine the optimal
agent and optimal dosing for each disease. A precise and
personalized approach is necessary for the treatment of SAIDs
given the degree of clinical heterogeneity even among patients
with the same genotype.
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Lastly, our practice of treating SAIDs will undoubtedly evolve
with the rapid advances in understanding the mechanisms of
autoinflammation. New forms of SAIDs as well as new treatment
options will continue to appear. Deciphering the mechanistic
underpinnings of each condition will define more specific
druggable targets, which may eventually replace the current
approach of blocking selective cytokines and their signaling
pathways.

CONCLUSIONS

Tremendous progress has been made in identifying SAIDs and
understanding the biology of these complex disorders since the
term “autoinflammation” was coined more than 2 decades ago.
Advances in immunology and genetics have elucidated several
central pathways that propagate the inflammatory response in
SAIDs. Leveraging the experience of treating patients with in-
flammatory disorders, clinicians have found success in treating
patients with SAIDs using available medications. Precise target-
ing of pathologic mechanisms using biologics and Jakinibs has
made these potentially fatal diseases manageable for many pa-
tients. With generally favorable safety profiles, these agents
have become indispensable for the treatment of SAIDs. Most
importantly, more clinical trials are being conducted on SAIDs
and these studies will bring clarity on the best practice of treating
these intriguing conditions.
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